Texture analysis using Gabor wavelets

نویسندگان

  • Golshah Naghdy
  • Jian Wang
  • Philip Ogunbona
چکیده

Receptive field profiles of simple cells in the visual cortex have been shown to resemble even-symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently Wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scalespace information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularised by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel ifiter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from DC. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior disciiminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture Classification Based on Gabor Wavelets

This paper presents the comparison of Texture classification algorithms based on Gabor Wavelets. The focus of this paper is on feature extraction scheme for texture classification. The texture feature for an image can be classified using texture descriptors. In this paper we have used Homogeneous texture descriptor that uses Gabor Wavelets concept. For texture classification, we have used onlin...

متن کامل

An Efficient Texture Classification Algorithm using Gabor Wavelet

In this paper we have investigated the application of nonseparable Gabor wavelet transform for texture classification. We have compared the effect of applying the dyadic wavelet transform as a traditional method with Gabor wavelet for texture extraction. It is well known that Gabor wavelets attain maximum joint space-frequency resolution which is highly significant in the process of texture ext...

متن کامل

Classification of Endometrial Images for Aiding the Diagnosis of Hyperplasia Using Logarithmic Gabor Wavelet

  Introduction: The process of discriminating among benign and malignant hyperplasia begun with subjective methods using light microscopy and is now being continued with computerized morphometrical analysis requiring some features. One of the main features called Volume Percentage of Stroma (VPS) is obtained by calculating the percentage of stroma texture. Currently, this feature is calculated ...

متن کامل

Gabor wavelets combined with volumetric fractal dimension applied to texture analysis

Texture analysis and classification remain as one of the biggest challenges for the field of computer vision and pattern recognition. On this matter, Gabor wavelets has proven to be a useful technique to characterize distinctive texture patterns. However, most of the approaches used to extract descriptors of the Gabor magnitude space usually fail in representing adequately the richness of detai...

متن کامل

Unsupervised Texture Segmentation: Comparison of Texture Features

Texture is an important image-content that has been utilized for different machine intelligent tasks, like those in machine vision and remote sensing, which identify objects of interest by segmenting the image texture. This paper aims at comparing texture features based on DFT (Discrete Fourier Transform) with ones based on Gabor wavelets for unsupervised image segmentation. The comparison is r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996